Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 17(2): 461-471, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31855437

RESUMO

Tumor-targeted drug delivery systems offer not only the advantage of an enhanced therapeutic index, but also the possibility of overcoming the limitations that have largely restricted drug design to small, hydrophobic, "drug-like" molecules. Here, we explore the ability of a tumor-targeted delivery system centered on the use of a pH-low insertion peptide (pHLIP) to directly deliver moderately polar, multi-kDa molecules into tumor cells. A pHLIP is a short, pH-responsive peptide capable of inserting across a cell membrane to form a transmembrane helix at acidic pH. pHLIPs target the acidic tumor microenvironment with high specificity, and a drug attached to the inserting end of a pHLIP can be translocated across the cell membrane during the insertion process. We investigate the ability of wildtype pHLIP to deliver peptide nucleic acid (PNA) cargoes of varying sizes across lipid membranes. We find that pHLIP effectively delivers PNAs up to ∼7 kDa into cells in a pH-dependent manner. In addition, pHLIP retains its tumor-targeting capabilities when linked to cargoes of this size, although the amount delivered is reduced for PNA cargoes greater than ∼6 kDa. As drug-like molecules are traditionally restricted to sizes of ∼500 Da, this constitutes an order-of-magnitude expansion in the size range of deliverable drug candidates.


Assuntos
Citoplasma/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Melanoma/tratamento farmacológico , Proteínas de Membrana/metabolismo , Ácidos Nucleicos Peptídicos/administração & dosagem , Neoplasias Cutâneas/tratamento farmacológico , Células A549 , Animais , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Concentração de Íons de Hidrogênio , Bicamadas Lipídicas/metabolismo , Melanoma/patologia , Proteínas de Membrana/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular/métodos , Neoplasias Cutâneas/patologia , Resultado do Tratamento , Microambiente Tumoral/efeitos dos fármacos
2.
Arch Biochem Biophys ; 565: 40-8, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25444855

RESUMO

pHLIPs are a family of soluble ∼36 amino acid peptides, which bind to membrane surfaces. If the environment is acidic, a pHLIP folds and inserts across the membrane to form a stable transmembrane helix, thus preferentially locating itself in acidic tissues. Since tumors and other disease tissues are acidic, pHLIPs' low-pH targeting behavior leads to applications as carriers for diagnostic and surgical imaging agents. The energy of membrane insertion can also be used to promote the insertion of modestly polar, normally cell-impermeable cargos across the cell membrane into the cytosol of targeted cells, leading to applications in tumor-targeted delivery of therapeutic molecules. We review the biochemical and biophysical basis of pHLIPs' unique properties, diagnostic and therapeutic applications, and the principles upon which translational applications are being developed.


Assuntos
Permeabilidade da Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Sistemas de Liberação de Medicamentos , Proteínas de Membrana , Neoplasias , Animais , Membrana Celular/química , Membrana Celular/patologia , Humanos , Concentração de Íons de Hidrogênio , Proteínas de Membrana/química , Proteínas de Membrana/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Estrutura Secundária de Proteína
3.
J Biol Chem ; 288(38): 27469-27479, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-23908353

RESUMO

Humans express five distinct myosin isoforms in the sarcomeres of adult striated muscle (fast IIa, IId, the slow/cardiac isoform I/ß, the cardiac specific isoform α, and the specialized extraocular muscle isoform). An additional isoform, IIb, is present in the genome but is not normally expressed in healthy human muscles. Muscle fibers expressing each isoform have distinct characteristics including shortening velocity. Defining the properties of the isoforms in detail has been limited by the availability of pure samples of the individual proteins. Here we study purified recombinant human myosin motor domains expressed in mouse C2C12 muscle cells. The results of kinetic analysis show that among the closely related adult skeletal isoforms, the affinity of ADP for actin·myosin (K(AD)) is the characteristic that most readily distinguishes the isoforms. The three fast muscle myosins have K(AD) values of 118, 80, and 55 µM for IId, IIa, and IIb, respectively, which follows the speed in motility assays from fastest to slowest. Extraocular muscle is unusually fast with a far weaker K(AD) = 352 µM. Sequence comparisons and homology modeling of the structures identify a few key areas of sequence that may define the differences between the isoforms, including a region of the upper 50-kDa domain important in signaling between the nucleotide pocket and the actin-binding site.


Assuntos
Miosinas Cardíacas/química , Cadeias Pesadas de Miosina/química , Músculos Oculomotores/química , Miosinas de Músculo Esquelético/química , Animais , Sítios de Ligação , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Linhagem Celular Transformada , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Camundongos , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Músculos Oculomotores/metabolismo , Especificidade de Órgãos/fisiologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais/fisiologia , Miosinas de Músculo Esquelético/genética , Miosinas de Músculo Esquelético/metabolismo
4.
Proc Natl Acad Sci U S A ; 110(31): 12607-12, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23798412

RESUMO

Cardiovascular disorders are the leading cause of morbidity and mortality in the developed world, and hypertrophic cardiomyopathy (HCM) is among the most frequently occurring inherited cardiac disorders. HCM is caused by mutations in the genes encoding the fundamental force-generating machinery of the cardiac muscle, including ß-cardiac myosin. Here, we present a biomechanical analysis of the HCM-causing mutation, R453C, in the context of human ß-cardiac myosin. We found that this mutation causes a ∼30% decrease in the maximum ATPase of the human ß-cardiac subfragment 1, the motor domain of myosin, and a similar percent decrease in the in vitro velocity. The major change in the R453C human ß-cardiac subfragment 1 is a 50% increase in the intrinsic force of the motor compared with wild type, with no appreciable change in the stroke size, as observed with a dual-beam optical trap. These results predict that the overall force of the ensemble of myosin molecules in the muscle should be higher in the R453C mutant compared with wild type. Loaded in vitro motility assay confirms that the net force in the ensemble is indeed increased. Overall, this study suggests that the R453C mutation should result in a hypercontractile state in the heart muscle.


Assuntos
Miosinas Cardíacas/metabolismo , Cardiomegalia/metabolismo , Movimento Celular , Doenças Genéticas Inatas/metabolismo , Mutação de Sentido Incorreto , Miocárdio/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Substituição de Aminoácidos , Animais , Miosinas Cardíacas/genética , Cardiomegalia/genética , Cardiomegalia/patologia , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/patologia , Células HEK293 , Humanos , Camundongos , Miocárdio/patologia , Cadeias Pesadas de Miosina/genética , Cadeias Leves de Miosina/genética , Cadeias Leves de Miosina/metabolismo , Pinças Ópticas
5.
Cell Mol Life Sci ; 69(24): 4239-55, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23001010

RESUMO

The myosin isoform composition of the heart is dynamic in health and disease and has been shown to affect contractile velocity and force generation. While different mammalian species express different proportions of α and ß myosin heavy chain, healthy human heart ventricles express these isoforms in a ratio of about 1:9 (α:ß) while failing human ventricles express no detectable α-myosin. We report here fast-kinetic analysis of recombinant human α and ß myosin heavy chain motor domains. This represents the first such analysis of any human muscle myosin motor and the first of α-myosin from any species. Our findings reveal substantial isoform differences in individual kinetic parameters, overall contractile character, and predicted cycle times. For these parameters, α-subfragment 1 (S1) is far more similar to adult fast skeletal muscle myosin isoforms than to the slow ß isoform despite 91% sequence identity between the motor domains of α- and ß-myosin. Among the features that differentiate α- from ß-S1: the ATP hydrolysis step of α-S1 is ~ten-fold faster than ß-S1, α-S1 exhibits ~five-fold weaker actin affinity than ß-S1, and actin·α-S1 exhibits rapid ADP release, which is >ten-fold faster than ADP release for ß-S1. Overall, the cycle times are ten-fold faster for α-S1 but the portion of time each myosin spends tightly bound to actin (the duty ratio) is similar. Sequence analysis points to regions that might underlie the basis for this finding.


Assuntos
Miosinas Ventriculares/metabolismo
6.
Cell Mol Life Sci ; 69(13): 2261-77, 2012 07.
Artigo em Inglês | MEDLINE | ID: mdl-22349210

RESUMO

The myosin isoform composition of the heart is dynamic in health and disease and has been shown to affect contractile velocity and force generation. While different mammalian species express different proportions of α and ß myosin heavy chain, healthy human heart ventricles express these isoforms in a ratio of about 1:9 (α:ß) while failing human ventricles express no detectable α-myosin. We report here fast-kinetic analysis of recombinant human α and ß myosin heavy chain motor domains. This represents the first such analysis of any human muscle myosin motor and the first of α-myosin from any species. Our findings reveal substantial isoform differences in individual kinetic parameters, overall contractile character, and predicted cycle times. For these parameters, α-subfragment 1 (S1) is far more similar to adult fast skeletal muscle myosin isoforms than to the slow ß isoform despite 91% sequence identity between the motor domains of α- and ß-myosin. Among the features that differentiate α- from ß-S1: the ATP hydrolysis step of α-S1 is ~ten-fold faster than ß-S1, α-S1 exhibits ~five-fold weaker actin affinity than ß-S1, and actin·α-S1 exhibits rapid ADP release, which is >ten-fold faster than ADP release for ß-S1. Overall, the cycle times are ten-fold faster for α-S1 but the portion of time each myosin spends tightly bound to actin (the duty ratio) is similar. Sequence analysis points to regions that might underlie the basis for this finding.


Assuntos
Modelos Biológicos , Proteínas Motores Moleculares/metabolismo , Proteínas Recombinantes/metabolismo , Miosinas Ventriculares/metabolismo , Actinas/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Sequência de Bases , Humanos , Hidrólise , Cinética , Camundongos , Proteínas Motores Moleculares/genética , Dados de Sequência Molecular , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/genética , Análise de Sequência de DNA , Miosinas Ventriculares/genética
7.
Proc Natl Acad Sci U S A ; 107(3): 1053-8, 2010 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-20080549

RESUMO

Human skeletal muscle fibers express five highly conserved type-II myosin heavy chain (MyHC) genes in distinct spatial and temporal patterns. In addition, the human genome contains an intact sixth gene, MyHC-IIb, which is thought under most circumstances not to be expressed. The physiological and biochemical properties of individual muscle fibers correlate with the predominantly expressed MyHC isoform, but a functional analysis of homogenous skeletal muscle myosin isoforms has not been possible. This is due to the difficulties of separating the multiple isoforms usually coexpressed in muscle fibers, as well as the lack of an expression system that produces active recombinant type II skeletal muscle myosin. In this study we describe a mammalian muscle cell expression system and the functional analysis of all six recombinant human type II skeletal muscle myosin isoforms. The diverse biochemical activities and actin-filament velocities of these myosins indicate that they likely have distinct functions in muscle. Our data also show that ATPase activity and motility are generally correlated for human skeletal muscle myosins. The exception, MyHC-IIb, encodes a protein that is high in ATPase activity but slow in motility; this is the first functional analysis of the protein from this gene. In addition, the developmental isoforms, hypothesized to have low ATPase activity, were indistinguishable from adult-fast MyHC-IIa and the specialized MyHC-Extraocular isoform, that was predicted to be the fastest of all six isoforms but was functionally similar to the slower isoforms.


Assuntos
Músculo Esquelético/metabolismo , Miosinas/metabolismo , Adenosina Trifosfatases/metabolismo , Humanos , Miosinas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...